Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode.

نویسندگان

  • Xue-Feng Li
  • Xu Ni
  • Liang Feng
  • Ming-Hui Lu
  • Cheng He
  • Yan-Feng Chen
چکیده

Nonreciprocal wave propagation typically requires strong nonlinear materials to break time reversal symmetry. Here, we utilized a sonic-crystal-based acoustic diode that had broken spatial inversion symmetry and experimentally realized sound unidirectional transmission in this acoustic diode. These novel phenomena are attributed to different mode transitions as well as their associated different energy conversion efficiencies among different diffraction orders at two sides of the diode. This nonreciprocal sound transmission could be systematically controlled by simply mechanically rotating the square rods of the sonic crystal. Different from nonreciprocity due to the nonlinear acoustic effect and broken time reversal symmetry, this new model leads to a one-way effect with higher efficiency, broader bandwidth, and much less power consumption, showing promising applications in various sound devices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proceedings of Meetings on Acoustics

The development of a passive, sonic crystal-based device with unusual properties will be reported. This device combines a 1D sonic crystal, a nonlinear medium, and an acoustic low pass filter to allow broadband ultrasound propagation as a collimated beam for specialized underwater communication. The signal to be transmitted is first amplitude modulated with a high-frequency ultrasonic carrier w...

متن کامل

Modelling and simulation of acoustic wave propagation in locally resonant sonic materials.

Sonic crystals are artificial structures consisting of a periodic array of acoustic scatterers embedded in a homogeneous matrix material, with a usually large impedance mismatch between the two materials. They exhibit strong sound attenuation at selective frequency bands due to the interference of multiply reflected waves. However, sound attenuation bands in the audible range are only achieved ...

متن کامل

A quasi two-dimensional model for sound attenuation by the sonic crystals.

Sound propagation in the sonic crystal (SC) along the symmetry direction is modeled by sound propagation through a variable cross-sectional area waveguide. A one-dimensional (1D) model based on the Webster horn equation is used to obtain sound attenuation through the SC. This model is compared with two-dimensional (2D) finite element simulation and experiment. The 1D model prediction of frequen...

متن کامل

Acoustic propagation analysis in the front of saline water mass in the Gulf of Aden

Background and Objectives: Influence of water mass on sound propagation in the Gulf of Aden underwater acoustics used for communication, navigation and identification of objects by both humans and marine mammals and for investigating the detrimental effects of anthropogenic activities (e.g. pile driving, seismic survey and ships) on marine animals. The Gulf of Aden presents a unique ecosystem t...

متن کامل

Acoustic asymmetric transmission based on time-dependent dynamical scattering

An acoustic asymmetric transmission device exhibiting unidirectional transmission property for acoustic waves is extremely desirable in many practical scenarios. Such a unique property may be realized in various configurations utilizing acoustic Zeeman effects in moving media as well as frequency-conversion in passive nonlinear acoustic systems and in active acoustic systems. Here we demonstrat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 106 8  شماره 

صفحات  -

تاریخ انتشار 2011